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ABSTRACT

This paper is concerned with a number of topics in the theory of

viscosity solutions of Hamilton'Jacobi equations in infinite dimensional

spaces.begun in Parts I and II of this series. The development of the theory

in the generality in which the $space$ or state variable lies in an infinite

dimensional space is partly motivated by the hope of eventual applications to

the theory of control of partial differential equations or control under

partial observation. Among the results presented are: The existence and

uniqueness theory previously discussed in spaces with the Radon-Nikodym

property is extended beyond this clasel examples are given which show that

!. Galerkin approximation arguments in their naive forms cannot be made the basis

of an existence theoryl some equations with *unbounded terms4 of the sort that

arise in control of pde's are treated by means of a change of variables

reducing the problem to the previously studied cases.
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HAMILTON-JACOBI EQUATIONS IN INFINITE DIMENSIONS, PART III

Michael G. Crandall and Pierre-Louis Lions"

This paper continues the study of Hamilton-Jacobi equations in infinite dimensions

begun in (9] - (10]. The equations of interest have the form .-.

(HJ) F(x,u,Du) - 0 in .

where R is an open subset of some real Banach space V, the unknown function u:fl + R is

to be continuous, Du(x) denotes the Frfchet derivative of u at x c n (and thus takes

its values in the dual V* of V), while the nonlinear function F is a continuous mapping

from 0 x R x V* into R (i.e. F C C(n x R x V*)).

In Part I ([9]), we showed that general uniqueness results hold for Hamilton-

Jacobi equations in infinite dimensional spaces for the same type of generalized

solutions, the so-called viscosity solutions, for which uniqueness was proved in the

"classical case" V - RN in [7] (see also M. G. Crandall, L. C. Evans and P. L. Lions

(5]). Corresponding existence results were proved in Part II ([10]) under essentially

the same assumptions on the equation and V as used for uniqueness. Various

counterexamples showing the necessity of the assumptions on the equation were also *-

given in (91, [10].

A basic assumption made in Parts I and II was that V has the Radon-Nikodym

property (i.e., "V is RN"). The Radon-Nikodym property was used everywhere in the

analysis in the guise of a result of C. Stegall [23] asserting that if V is RN, then a

bounded, continuous real-valued function on a closed ball in V can be perturbed by an
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'Universite de Paris-Dauphine, Place de Lattre de Tassigny, 75775 Paris, Cedex 16,
France...

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. .......

A ai ability 
C odes

IAvil a id i or
D ist . . ..U

. . ...... ..... .. . ....



arbitrarily small linear functional to obtain a function which attains its minimum

value. This result was the device which enabled us to overcome the lack of compactness

of closed and bounded subsets of V in extending the uniqueness arguments from the

classical case. It was also assumed (although the assumption was buried in conditions

imposed on the Hamiltonian) that V admits a norm-like function which is differentiable

on V \{O1. Two other new ingredients (beyond the use of Stegall's result mentioned

above) were required to treat the existence question; the use of ad hoc differential

games to provide existence for "regularized" Hamiltonians and a sharp constructive

convergence result (10,Theorem 2.1], which was new even in the classical case.

The topics taken up in the current paper are wide ranging; they include relaxing

the requirement that V be RN in the uniqueness and existence theory, existence and

uniqueness results when H satisfies coercivity conditions, examples showing the

4 dramatic failure of the basic Fadeo-Galerkin method and the treatment of (SP) and (C?)

in certain cases in which the Hamiltonian is not everywhere defined but involves

expressions like Ax in which -A is an unbounded generator of a strongly continuous

semigroup of contractions. A more detailed description follows.

Section I of this paper is devoted to relaxing the requirement that V be RN in

parts of the theory. This is done by introducing the notion of strict viscosity

solutions (which was briefly mentioned in (9, Appendix]). It is shown that the notion -,_t

is stable, coincides with the standard notion in nice spaces and that if (for example)

the norm of V is differentiable except at the origin, then general uniqueness results

hold for both the model stationary problem

(SP) u + H(x,u,Du) * 0 in V

and the Cauchy problem

(CP) ut + H(x,t,u,Du) * 0 in V x (0,T]

u(x,O) x

The principal new technical aspect involves using the notion of strict viscosity

solutions to work with Ek'land's principle (13] (which holds in general Banach spaces)

, 9.. . .

-2-

er.



in place of Stegall's result. However, this theory still requires V to satisfy some

version of the con4itions '-. ,,

(0) There is a mapping N:V + [0,-[ which is Lipschitz continuous on V,

differentiable on V\O1 and satisfies N(x) I lxI for x c V.

We note that this condition excludes extremely important choices for V like L
1
, L,,.

spaces of continuous functions and the space of bounded measures. The study of (R17)

equations in these spaces remains almost totally open. After the discussion of

uniqueness, we present complementary existence results for (SP) and (CP). In the

discussions of both the existence and uniqueness results we give very little detail and

merely refer the reader to the program of Parts I and II when it is easily adapted to

the current setting. When essentially new arguments are required, we give at least one

example. in particular, the basic scheme of the existence proof is that which was

introduced in Part II ((10]). However, the method used in (10] for viscosity solutions "'"'-

breaks down for strict viscosity solutions in the final stages of the argument and this -

new difficulty is overcome by considering two distinct differential games for the same

equation.

Section II is devoted to three distinct topics. First, it is shown how to obtain

existence and uniqueness results when the Hamiltonian in (S) or (CP) is coerciver that

is H(x,p) + - as the norm of p e V tends to -. Secondly, we give examples which show

the 4ramatic failure of the raedo - Galerkin approximation method (in a simple form) as

a vehicle to prove the existence results. Indeed, natural finite dimensional

approximations may converge to a function solving the wrong equationi Finally, we

consider some Hamilton - Jacobi equations associated with control problems for

evolution equations. These have the form

(1) ut + (Ax,Du) + F(t,Du) - 0 in V x1,T[

where V is a Hilbert space and the (possibly unbounded) linear operator -A is the

infinitesimal generator of a strongly continuous semigroup on V. Similar equations

were first stuelied by V. Sarbu and G. Davrato (11, [2]. The term (Ax,p) occurring in

-3- -.
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the Hamiltonian is only defined if x lies in the domain of A, so (1) is not covered by

the results of Parts I and II. However, we introduce a device which allows one to .

reduce (1) to a form where the arguments of Parts I and II still succeed. As the

expert reader will have noticed, the form of (1) is not yet general enough to cover

many applications to the control of pde's one might hope to encompass in the theory,

and significant extensions of (1) are under investigation.

We would like to mention the fact that it is typical of the subject that all

existence and uniqueness results of the sort we present here have many variations. For

example, the following problems have been studied in the case V RN and the results

may be extended to the infinite dimensional setting: Problems with boundary conditions

" of either Dirichlet type (M. G. Crandall and P. L. Lions [7], P. L. Lions [18], (19],

G. Barles (31, (41) or Neumann type (P. L. Lions [20], a. Perthame and R. Sanders (22])

and problems whose solutions have different behaviours at (H. Ishiii [16) and M. G.

Crandall and P. L. Lions [12]).

We have assumed that potential readers (s?) of this paper have had significant

experience with viscosity solutions and Parts I and II are a prerequisite to following

the text. Indeed, while the statements of the results will be clear enough, the

assumptions themselves will be totally unpalatable without prior exposure.

-4-
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I. STRICT VISCOSITY SOLUTIONS

I.1. Definition, glementarX Properties and Uniqueness Results.

We begin by recalling the definitions of E-super and subdifferentials of u c CMfl)

at x e nl where fl is an open subset of the Banach space V. First let us fix some

notation. We will use fto denote the norm in V, the dual norm in V* and the

absolute value on R. BR (B;) will denote the ball of radius R and center 0 in V

(respectively, V*) while 8(.,r) (Btp,r)) is the ball of center x (respectively, p) and

radius r in V (respectively, V ).We will not distinguish between open and closed WW

balls; the reader can deduce which is appropriate from the context. The value of -

p c V at x c V will be denoted by (p,x).

The c - superdifferential of (p at x, D~~) is+vnb

andsimlary, he - sbdiferntil Du(x), is given by

(2) D +u(x) l p e urnli sup ( (Yi) - u(x) - (D' X)

yenl

aere, sisianylpostie n ubdfer itle thuht ios thatn antebwytysyta

p e D~u~x) (rseci Ely p C i ~up ist ua ha hr ~x ) ~)wihi

differentiable at x with the derivative D*(x) -p and a number 6, 0 4 6 < c such that

(respectively, minimum) with respect to y at y - X.

~4ow we define strict viscosity sub and supersolutions. Let F c C(fl x R X V )

Definition 1,1: If Y 0 and u C C((Q), then u is a strict viscosity subsolution up to

Yr of F =0 in Ql if

(4) int F(x,u(x),p + q) 0 for x c Ql, p E Du(x) and 0 < < y

and u is a strict viscosity supersolution up to y of F =0 in nl if

(4)' sup F(x,u(x),p + q) ?0 for x E Ql, p c D~u(x) and 0 < £ < Y.
Iqji"
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Of course, u is a strict viscosity solution of F - 0 up to y if it is both a

strict viscosity subsolution and a strict viscosity supersolution up to y. If u is a.- -

strict viscosity subsolution (supersolution, solution) up to y for all y > 0, then it

is simply a strict viscosity subsolution (respectively, supersolution, solution).

iinally, a strict viscosity subsolution (respectively, supersolution, solution) of

F 0 will be referred to as an strict viscosity solation of F ( 0 (respectively,

0, F 0).

Remarks 1.1:

i) The usual sub and superdifferentials D+u(x) and D-u(x) are related to the

c-versions by Du(x) = D~u(x). It then follows from the continuity of F and
r- -

letting c tend to zero in (4) and (4)' that strict viscosity sub and supersolutions are

viscosity sub and supersolutions in the ordinary sense. As usual, (4) is regarded as

satisfied automatically at points x for which D+u(x) is empty, etc.

(ii) We have changed the definition slightly from that given (as an example among

various possibilities) in Part I ((9]): In [9] we used (4) and (4)' but with

--V
Du(x) = " D'Cu(x) for C > 0 and v c

in place of D~u(x). Since these sets are larger than those given by (2) and (3), the

notion defined in 191 is stronger than that given here. If, for example,

F(x,r,*) C BUC(Bv) for R ) 0, x c n and r c R then the notions are equivalent.

(iii) The definition of strict viscosity sub and supersolutions apparently depends on

the choice of norms in V and V • We are taking the norm in V to be the dual of the

norm on V. To obtain a notion invariant under changing the norm of V or V to an

equivalent norm one would have to allow jqj 4 Cc in (4) and (4)'.

(iv) Many variants are possible: One may replace jqj e £ by any e-neighborhood of the

origin containing the ball P and even allow this neighborhood to depend on x. One

could also require (4) and (4)1 to hold simultaneously for all equivalent norms on V

-6-
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with the corresponding dual norms on V*. One may still prove uniqueness using many of

these various notions. .',"

(v) If u is differentiable at x, then D~u(x) U (Du(x),c). Hence if F(xru(x),Dux))

0, then (4) and (4)' also hold at x.

To begin the theoretical development, we will prove that the basic stability

property of classical viscosity solutions is enjoyed by strict viscosity solutionsr

that is this class of solutions is stable (closed) with respect to the topology of

local uniform convergence. In fact, we prove a little more below. Here and later,

expressions like a. a• mean lim an -a. We will say a sequence of functions fn on a

subset n of a metric space converges locally uniformly ( or fn f locally uniformly)

on n to e limit f if each point x e 0 has a neighborhood 0 such that fn(y) + f(y)

uniformly for y c 0 and that fn converges continuously to f (or fn + f continuously)

on n if whenever n D xn  x C n, then fn (Xn) f(x). In the event that the functions

f, also depend on some parameters X C A, it is clear what one means by fn + f locally

uniformly or continuously, uniformly for X c A.

While continuous convergence to a continuous limit is weaker than local uniform

convergence, we do not have any applications in mind at the moment for the added

generality provided by formulating one of the hypotheses in the following proposition

in terms of continuous convergence.

Proposition 1.1: Let I > 0, un, u c CMfl and Fn' F e c(fl x it x v for

n - 1,2..... . Let un be a strict viscosity solution of Fn 4 0 (respectively, Fn ) 0)

up to Y in n and assume that

(5) un 4 u li.lly uniformly and Fn(',.,p) * F(-,,p) continuously

on n x R uniformly in p C Bi for R > 0. Then u is a strict viscosity solution of F ( 0

respectively, F ) 0) up to Y in f.

Proof: We treat the subsolution case. Let E > 0, x c n and p c D+u(x). According to

the definitions and asumptions there will then exist an r > 0 and

-7-
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(0,C) such that

(6) u(y) - (p,y - x) - Fly - xl 4 u(x) for y c B(x,r)

and un  u uniformly on B(x,r). Choose n e (i,e) and set

Icy) = u(y) - (p,y - x) - nly - x,

for y E B(x,r). Put

(7) Sn -up I - ul ".-
sx,r)

and, assuming that n > 0 (the other case being trivial), choose xn c B(x,r) so that

B(x,r) (.-. .

It follows from Ekeland's theorem [13] that there is a yn C B(x,r) such that

(9) 'n(Yn ) ) tn(xn) n sup (0n- n ) and
B(x,r)

n)- 6nl - Ynl 'Pn(yn) for y 6 B(x,r).

In view of (6), (7) we see that

(10) Tnlyn ) 4 (Yn ) + 8n q '(x) + n- (n - )yn - xl

while

(11) > ( n(Xn) > n
(x ) 

- n - 26n.

Hence In - 4 3(Z - n)-1 6, and so Yn + x as n + -. In particular, y. is in the

interior of B(x,r) for large n and it follows from the second part of (9) that

Un(y) - (p,y - x) - (T + 6n)ly - Ynl 4 un(Yn) - (Ply, - x)

for y 6 B(x,r). Thus p 6 Dun(yn) for n large enoug andI...-

inf F(ynlun(yn),p + q) 4 0 for C • y.
qjI -c"

The result follows upon invoking the assumption (5).

W remark that slight changes in the proof above allow us to weaken the assumption

that un  u locally uniformly. Indeed, in the case of subsolutions (supersolutions) it

-8- -"
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is enough to have (un - u) + * 0 (respectively, (u - un) + 0) locally uniformly and WW

Un + u pointwise.

We next observe that viscosity solutions are strict viscosity solutions if the

norm of V is differentiable off the origin and V is RN.

Proposition 1.2: Let V be RN and the norm of V be differentiable off the origin. Let

r C C(a x R x V*) and assume that if xn + x and rn + r, then F(xn,rn,p) + F(x,t,p)

uniformly for p c BR for R > 0. If u e C(n) is a viscosity subsolution (supersolution)

of F - 0 on nl, then it is an strict viscosity solution of F 4 0 (respectively, F > 0)

in f.

In fact, this was shown in the appendix of [9] if V is finite dimensional with De

in place of Do (see Remarks 1.1(ii) above). The proof given in [9) adapts in a

straightforward way to the current case.

Our next task is to present the uniqueness results. By contrast with Part 1, we

will no longer assume that V is RN . However, we will still require the existence of

differentiable norm-like functions on V so that, in particular, Proposition 1.1"- -

holds. h well-known example of a space which is not RN but which admits such functions

is provided by the space co of sequences which converge to 0.

Example: The space co of sequences fan)n)I satisfying an + 0 has a norm which is

infinitely differentiable on the complement of the origin - see, for example, M. Leduc

(17] - hut it is not RN. indeed, to see that the form of the Radon-Nikodym property of

greatest interest to us fails, the reader may easily check that the function

({an}n•i) n (1 -1/nn;an0

has the property that no perturbation of it by a continuous linear functional attains

its maximum value on the closed unit ball. Thus, by Stegall's result [23], co is not

RN.,

The uniqueness results will be formulated in the context of the model problems

(SP) and (CP). The rather unpleasant task of formulating the conditions on the

-9-
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Haimiltonian H in these problems is taken up next. As in Part 11, we will state

conditions on H(x,t,r,p) where H:V x R x [0,T] x V + R and interpret these in the

* context of (SP) as applied to a t-independent Hamiltonian H(x,r,p).

We will make the following hypothesis throughout the paper and simplify the

presentation by nevermore referring to it:

* THE BLANKET CONTINUITY ASSUMPTION: H is bounded and uniformly continuous on

BR (0!,T] " -R,R] X BR for all R > 0.

In the statements below, a modulus is a continuous nondecreasing and subadditive 3
* mapping m:[0,-) + [0,-) with m(0) -0 and a local modulus is a continuous mapping

Gi[O,") x [0,-) + [0,-) nondecreasing in both variables such that r + a(r,R) is a

modulus for each R > 0. The assumptions we will use on H involve the existence of

certain auxiliary functions

d:V X V + R, V:V +R and ii:V + R

which satisfy the conditions (C) below and with respect to which H will be required to

* satisfy combinations of the conditions below:

(HI) For all R > 0 there Is a constant C R such that

H(x,t,r,p) - H(x,t,r,p + XDV(x)) C CR

for x c V, t e (0,T], r E R, p c 8 R 0 4 4 R.

* (H2) There is a local modulus a such that

H(x,t,r,p) -H(x,t,r,p + )ADU(X)) ( (,II

for x c V, t L [0,T], r C R, p C V ,0 4 ~~1

(H43) There is a modulus m such that

H(y,t,r,-)Ldy(x,y)) - H(x,t,rXdx(x,y)) 4 m(Xd(x,y) + d(x,y))

for x y E V, t E (0,TI, r c R, p E V ,and 0 4 X~ and d(x,y) 4 1.

-10-
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(H3w) There Is a local modulus Kc such that

H~yt~.-dx~y) Hx~~rdX~))f Kd~~y,*

for x j0 y C V, t c (0,T], r e R, p c V* and 0 4 A~

(H4) H(x,t,r,p) is nondecreasing with respect to r for (x,t,p) c V x [0,T) x V

The functions d, p, v satisfy the following conditions which we collectively denote by -

(C) d, ti, v are Lipschitz continuous, d(x,y) is differentiable in x for x $y

and in y for y 0 x, V, Vi are nonnegative and differentiable on V, u(x) *-P

as Ixj '~ V(x) > jx for large jxl, d(x,y) Ix- yj on v V, and

d(x,x) 0 on V.

we observe that (C) implies (0), for if d has the properties of (C), then setting

N(x) =d(x,0) yields a function satisfying the requirements of (0).

Theorem 1.1 (Uniqueness for (CP)): Let MH), (H3), (44) and (C) hold and y > 0. Let

f C Cb(V x~ [0,T)) and u, v 6 BUC(BR x [0,T)) for all R > 0. Let u and v be,

respectively, a strict viscosity solution up to y of

Ut + H(x,t,u,Du) 4 0 and vt + 1(x,t,v,Dv) + f(x,t) ;0 0

in V x ]0,T(. Let u and v be uniformly continuous in x uniformly for t c [0,7].

Nssuwae also that either (Hi) holds or that u - v is bounded from above. Then

(12) u(x,t) - v(x't) 4 sup (u(y,O) - v(Y,0)) ++ f sup f(y,s) ds
yCV 0 yCV

Finally, if u or v is Lipschitz continuous on V uniformly in t c [0,T), then (12) still

holds if MH) is weakened to (H3w).

Theorem 1.2 (Uniqueness for (SP)): Let (H42), (U4), (H44) and (C) hold. Let

f C %b(V). Let ui, v e UC(V) and be, respectively, a strict viscosity solution of

u + H(x,u,Du) 4 0 and v + H(x,v,Dv) + f(x) 0 up to Y. Assume also that either (Hi)

holds or u -v is bounded from above. Then



.N.

(13) u(x) -v(x) (C sup f(y) + for x c V.
yCV

Finally, if u or v is Lipschitz continuous on V, then (13) still holds if (H43) is

weakened to (143w). .*I

Remarks 1.2:

* Ci) The reader will find some discussion concerning the formulation of the hypotheses -

* (H41) - (M4) in Parts I and II as well as examples illustrating the scope and necessity

of various conditions.

(ii) (H43) may be generalized as in 14. G. Crandall and P. L. Lions [9).

(iii) If (0) holds and H satisfies

* (14) H4 E UC(V x (0,T] x R x B)

for all R > 0 and there is a modulus m such that 4

(15) IH(x,t,r,p) - H(y,t,r,p)I e ( x - yli( + Ipi))

* for x,y c V, t a [0,T), r c R and p E V*, then (Hl1), (142) and (H43) hold with

C1 (x, y) N N(x - y) , II 1+ 9 2 )1/2.

(iv) A simple but striking and useful extension of the above results comses about as

* follows: In the case of Theorem 1.2, assume that there is a nondecreasing function g(e)

- > 0 such that g(O+) = 0 and rather than being a strict viscosity solution of

-. u + H(x,u,Du) < 0 in V, u c tiC(V) satisfies

u(x) + inf 1(x,u(x),p + q) 4 g(e) for x a V, p e D +u(x) and 0 < c < Y
e

*while v satisfies the corresponding weakened notion of strict viscosity solution of

*v + H(x,v,ov) + f > 0. Then the assertions of Theorem 1.2 remain correct. A similar

- remark holds for Theorem 1.1. Indeed, in the case of Theorem 1.2, one just observes

that for C < y u is a strict viscosity solution of u + F(x,u,fDu) 4 g(c) up to C, etc.,

* applies the previous result and lets E 0.

We- will illustrate the main new ingredient in the proof of these theorems, which

* is the use of Ekeland's principle at the point in the argument where Stegall's result

was previously used, in the simplest case. That is, we will assume u, v c BIJC(V) are

5 -12-



strict viscosity solutions of .=

(16) U + H[Du) 4 0 and V + H(Dv) > 0

where H C UCI8 R ] for all R > 0. Assuming, moreover, that (0) holds puts us in the 1W j'.
.t0

situ ation of Remarks 2(111) with m - 0. We follow the arguments of Part I with the

change just remarked on and modified to reflect the point of view of M. G. Crandall,

H. Ishii and P.-L. Lions (6]. Let Z - V x V and for z - x,y) e Z -:-

w(z) = u(x) - v(y). ";;

Then it is traightforward to check that w is an strict viscosity solutioo oo

(16)~~~ + + H(u) 0 an vn Z (v

where ; c C(V* x V*) is given by sm m o t ( l p u h

([p,q]) - H(p) - H(q).

Define 4 by *(Ex,yl) - 8N(x - y)2 where a is a parameter to be chosen. Then

(19) O(Z) + (00(z) )' 0

pointwise in Z (and so 4 is a strict viscosity solution of the same inequality). (Of

course, (19) holds trivially here since H(D4(z)) -0 , but in more general cases one

constructs corresponding differentiable supersolutions.) We want to prove that

u 4 v. It will suffice to show that if R is large, then

w([x,yl) - u(x) - v(y) < 0((x,yl) on 0 - ((x,yl: Ix - yf 1}

since *([x,x]) B 0. Let i, 6 > n and z c 0 satisfy

w(z) - >(z) ) sup (w -4) -6 and

(20)

w(Z) - (Z) - Oiz - ;i 4 w(z) - 0(;) for z c n.
The existence of i is from Ekeland's theorem. Using the boundedness of u and v, one

sees that if S is large and 6 small, then i c 0. The second inequality then implies

that DO ) C Dw(z) for c > n. Hence, (19) in the pointwise sense and (18) in the

strict viscosity solution yields

A

-13-
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w~)-*Ih~ w(;) H(04(z)) C (i) + inf H(D#(Z) + (p,q]) +

IHCDCZ() + Ep,ql)-H(D#(;))l I qjI(() + [p,q])-HD().

in conjunction with (20) we thus have

sup (W - 4) 4 sup JHtDf(z) + Ep,q)) - 1(DOz)J +8

IpIIqI4"
Since 9 is Lipschitz continuous, ; is uniformly continuous on bounded sets and n,8 and

*~ > n i are arbitrary, the result follows upon sending C and 8to 0.

-14- .J
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1.2. Existence and Relations With Differential Games. Mw
"6 -

We begin with an existence result for the Cauchy problem (CP). %'

Theorem 1.3: Let T >0, v e tJC(V). Let H satisfy (ff2), (Mf) and (Uf). .

(I) If (Hf1) holds, then there exists a unique strict viscosity solution u of (CP) such

that u C UC(BR [ 0,Tj) for R >0 and u is uniformly continuous in V uniformly for

t c [0,T).

(ii) If qi e BUC(V), ff(x,t,0,Q) cC %(V x (0,T)), then there exists a unique bounded

uniformly continuous in x c V uniformly for t e 10,T].

Existence for the stationary problem requires some additional assumptions on H.

For example:

(Hf5) There is a function r:[0,w) x [0,in) + [0,-) which is nondecreasing in its

arguments such that

ff(yor,-)Xdy(x,y)) - f(x,rXdx(x,y)) 4 F(X,d(x,y))

for xv y er V, r cr R, A. 0 and a nondecreasing uniformly continuous map

G:Eo,in) R fwhich Is continuously differentiable on C0,-) and satisfies

Theorem 1.4: Let H satisfy (Mf), (Hf3) and (Mf).

(i) If (Hf1), (45) hold there is a unique strict viscosity solution of (SP) in UC(V).

(ii) If ff(x,O,0) C BUCMV, there exists a unique strict viscosity solution of (SP) in

BUC(V.

Sketch of proof of theorems 1.3 and 1.4: Again, the outline of the existence proof in

Part It can be followed through Sections 2 and 3 of [10). However, the arguments of

Section 4 must be modified substantially to accommodate the strict viscosity notion.%

we will explain the required modifications in the following model case:

(20) u + 14(x,Du) - 0 in V

where H is bounded and Lipschitz on V x V * one can still formulate differential games

ILV



whose value functions are viscosity solutions of (20) (as was shown in o1011, but we do

not know how to show directly that they are strict viscosity solutions of (20) -

indeed, depending on which game we choose we will only be able to show that the value

function satisfies either

u(x) + inf H(x,p + q) 4 LC for xe V and p c D U(x),

(21)

u(x) + sup H(x,p + q) > 0 for x c V and pc ulx)

Iql¢ .

or

u(x) + inf H(x,p + q) < 0 for xe V and p c D u(x),

(22)

u(x) + sup H(x,p + q) ) - Cc for x c V and pD-C u(x)

Iqi" £A.>

where L is a constant depending on H. However, this is enough, because we can use the
,., -

concluding remarks of Section 1 to deduce that the two value functions coincide, and

thus we have a strict viscosity solution solution of (20).

We now explain how to form the differential games we use. For R ) 0 put

HR(x,p) inf {H(x,q) + LIp - qj "

* (23) qEB .*

J.x,p) sup.{H(x,q) - Lip - qjl) -

qcBR

where L is a Lipschitz constant for H with respect to p. Clearly

(24) Rx,p) ) H(x,p) > Rxp) on V x V and H - on V x BR.

Next we observe that we may write HR, H. as follows:

RR (X,p= inf sup{ H(x,q) - (p,z) + (q,z)•

(25) qcBR zCBL

•H,(x,p) = sup inf{ H(x,q) - (p,z) + (q,z)}.
"A °.- qEBR ZBL .

The developments which follow will produce "value functions" UR'-R C BUC(V) which are

Lipschitz continuous with constant L associated with these representations of R and-HR

-16-
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and corresponding differential games. These functions will be shown to satisfy

G.Rx)+ nf ,(~p+ q) ( 0 for x cV, p e 0cu(x), E £ 0

;( + suinf xp q) -Lc for x e V, p c D-Cu(x), e > 0,

_.(x sup (x,p + q) e o ,p~Du(x), e > 0.

Iqce

I ,(xlp + 
)

whenever w is Lipschitz with constant L. 'Putting these things together, the argumsents

q * pin (26), (27) belong to BL + £ n hsw ayrpaeR,. by H in (26),

(27) provided L + 2c < R.

We next build the value functions ZLR, 2 which satisfy the above conditions.

Consider the following sets of "controls":

Q - (strongly measureable maps q:(O,-) S R

z - {strongly measurable z:[0,w) + a L

and the corresponding strategies

Z {nonanticipating maps ;,Q Z

where a strategy is nonanticipating if whenever two controls agree &ae. on some

interval [0,a], then their images by the strategy agree a.e. on the same interval. We

set

fU~c,z,q) - 1(x,q) -(q,z)

and for q e Q z C Z, and t > 0

-17-



=t x + f. zq(6)48

o

where we suppress some of the arguments of X in the notation. Then put

u x inf :sup f( fC'z(q](t),q(t))e dt
R ~ 0

zCZ qCQ

t-

zCZ qCQ0

It is immediate from these formulae that 7R2 are Lipschitz continuous on V with

constant L. We now have to check (26) and (27). The crucial dynamic programming

principle reads

uflCx) inf sup I fhf(Xt E](t),q(t))e ~dt + uR(Xh)e
zCZ qCQ 0

and we immediately deduce from it that

sup mtf (!(; (x) - R(Xh)) h f(x,z~ql(t),q(t))dt) +. uRCx) -Y(h)

zCZ qCQw
*where 'r~h) *0 as h *0.

We may now check the second inequality in (26) very easily. For notational

simplicity we now set w - u.. Let E > 0, x 6 V, and p c Dw(x). Then there are r, h

> 0 such that

w(y) > w(x) + (q,y -x) - £y -xl for ly -xl 4 r,

* and

lXh 1 ~4 r for all z e Z and q C Q if h 4 ho.

* The above dynamic programming equality then implies that for h (h. and any fixed

q C S4 (regarded as a constant control), we have

1h h4 xq)+wx -

SUP ((q - p,1 f z~q)(t)) + CI-1 f tql(t)dtl)+ xq)+w ) yh.
h0 0

This implies, upon letting h tend to 0, that

-18-



L pi + Le~ + H(x~q) + w(x) )0,-

and since q c B;t is arbitrary, we are done.

We prove the first inequality of (26) arguing by contradiction. Let C > 0,%

V, Vp C D+ W~ and ~4

1iifH,(x,p + ni) + w(x) ) 4Y > 0.

This implies that

ing inf ILip + ni qj + fl(X,q)} + w(x) )Y

or

int sup I - (p -q,z) -CIzI + tI(x,q)l + w(x) , 4y.
qCB R zCBL

we can then choose for each q c 4R some z(q) c BL (in a strongly measurable way) such
that

- (p - q,z(q)) - Ejz(q)j + H(X,q) + w(x) )3Y.

Therefore, for each control q c we have

-(p - q,z(q(t))) - £z(q~t))j + H(x,q(t)) + w(x) )3Y a.e.

Defining the strategy z by ztq](t) -z(q(t)), we integrate this inequality over the

interval 0 4 t 4 h to find

Sup {-Ip -q~t),X - x) C I 2 f lz[q1(t)ldt f f.i.q~),~))t

qQ hh 0 h0

+ w(x) ;P 3Y

Since

h. h~

0 0 ~ ftdj ~X
we finally conclude that

inZ sup h -P~'x - h) - *-x Xh +j2 - i fI f(x,z~q] (t),q(t))dtl + w(x) o 3Y. 'I

h0

g-.
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This inequality and the dynamic programming equality are inconsistent, establishing the

* result. The arguments to establish (27) are entirely parallel, and we end the

discussion here.

Wnov describe the relations between differential games and strict viscosity

cas ofinfnit hoizo prbles (hic coresondtostationary Hamilton-Jacobi

equaion). kaloousconsiderations hold for the relation between finite horizon

Consider metric spaces A and P and let b and f map V x A x B into V and R r

respectively. we assume that the maps (ci,B) *b(x,a,$) and (a,O) *f(x,*,B) are

continuous on A 9 for each x C V and the following boindedness and continuity

assumptions hold:

*(28) Ix.B)-fly,0,B)1 -c w(x -yI) for (x,a,B) cV x A x B

for some modulus w ;

(29) lf(0.tI,S)1 + Ib(x,a,)1 4 C for (x,a,S) C V x A x B.

and

(30) 1b(mc,a,P) - bWy,ca,)l 4 C0 IX - yl for x,y e V, M C A and Sc B

fr some constant rannd 0, niFferential games are constructed from this type of data

Sii the qets of controls and strategies defined next.

A ani a #u enote the set of controls for the a-player and the 0-player

reSPAe'tiVely; i.e., A (3) Is the set of strongly measurable mappings of 10,w) into A

frespoclrively, B). 'ie will denote by A and S' the strategies for the a-player and

?-player. That is, A is the set of nonanticipating maps from , to A, etc. (The expet

Wealet owi ntcre that de Are sing liot-Kalton's formulation of differential games

casee 14 - in thi paper, but this is by no means compulsory.) Fixing aob0, the

peuair inl .er values issidratei with our game are given by:

Io r ) L s up f(X ,1and et an a s for Ax t V

-20--
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and

(32) ;(xK) -sup inf f f(Xs ct(s),B~ai](8))e -sda for x c V

where the state process X sataifies

t
Xs x + f b(X ,a(e),O(s))da for t )0

0 5

with ~ ,~=1(]in (31) and =, -Bm]in (32). The following result states

the relationship between 1,u and the Isaac's equations

(32) Xu + H(X,Du) 0 in V

and

(33) Nu + R(x,Du) -0 in V

where

14(x,p) =inf sup f-(b(x,Vl,l),P) - xaBi

and

TH(x,p) sup inf {-(b(x,a,S),p) -f(x,ci,O)}

MC5A SEB P.

on V V

Proposition 1.3: Assume that (293), (29) and (30) hold. Then uand u e tlC(V and u -U

(respectively, 11) satisfies

Xu(x) + inf H(x,p + q) < for x V, p E D u(x) and c > 0V
jqJI-E

(34)
Xu(x) + sup 1I(x,p + q) > C) for x c V, p c DuE(u00 and C > 0

with H4 R (respectively, H H I). Thus, if V satisfies (0), (respectively. u) is the

unique uniformly continuous strict viscosity solution of (33) (respectively, (32)).

Proof: The verification of (34) is a straightforward adaptation of the arguments of L.

C. rvans an4 P. n. Souganidis [15] which, in turn, were the extension to differential

games of a remark of P.-L. Lions (18] when the "t terms" are treated as in the

-21-
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discussion of s h above. The fact that ,u lie in UC(V) is easily seen from the

explicit formulae. Next observe that H, R satisfy (14), (15) so that we may use

Theorem 1.2 and Remark 1.2 (iv) to conclude that if there is a uniformly continuous

strict viscosity solution u of (33) (respectively, (32)), then u - (respectively,

u - u). Again, as remarked in Part II (10], (15) implies (H5) and we may invoke the

existence Theorem 1.4 to conclude the proof.

The above result is not a verification theorem because it uses the existence of

strict viscosity solutions. In view of this, the fact that (26) and (27) hold for 3R

and u. may seem surprising - it is not, because one can prove directly (and thus in any

space V), for example, that is a strict viscosity subsolution of (33) if

((b(x,a,8),f(x,aS):a f A) is convex in V x R for every x c V and 3 e B. In fact, by

considering generalized controls and/or strategies (as in P.L. Lions and P. E.

Souganidis (20]), this may always be achieved.

We conclude this section by showing that for control problems the situation is

slightly better. For purposes of illustration, we take the particular case in the

above set up in which a t and b, f depend only on x and 0. Thus we consider

(35) u(x) inf f f(X ,(s))e -Xsds
aCIA 0

ahere

t
xt  x + f b(X ,a(s))ds for t > 0.

- 0

Proposition 1.4: Assume that (28), (29) and (30) hold with b, f independent of B and

> 0. Then the function u given by (35) is uniformly continuous and is a strict

viscosity supersolution of

(36) ,u(x) + sup { - (b(x,a),Du(x)) - f(x,i)} - 0 in V
t2CA

and u satisfies i

(37) ku(x)+sup{-(b(x,a),p)-cIb(x,a)l-f(x,a)} ( 0 for xcV, pcDu(x), C > 0.

-22-
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in particular, if C= {(b(x,t3),f(x,C9)):C1 C A) is convex for x c V, then u is a strict

viscosity solution of (36). Finally, if V satisfies (0), then u is the unique strict

viscosity solution of (36) in UC(V).

we skip the proof* since It consists of straighforward variants of arguments given

before (in particular, the verification of (37) is an easy adaptation of the method

given in P. L. Lions [i81). observe that the convexity of -x leads to the identtty

sup {-(b(x,ct),p) - £b(x,a)j f(x,al- inf sup f-(b(x,m).p + q) -~ ~a'

-23-
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1.3. An Example in a tMonsmooth Space.

The main paint of this section is that if V does not have a differentiable norm

(or, laore generally, does not satisfy (0)), then the various notions of viscosity

solution we have been using are not a suitable basis for a theory. This will be male

clear by means of an explicit example in the space 11 of summable sequences. Since I1I

does have the Radon-Nikodym property (it is separable and is the dual of co, and all

separable dual spaces have this property), the difficulties to be exhibited are

ontirely associated with the lack of "smooth" functions on the space.

We will let V denote the norm 1 9 of 1 1

fo x~ {xnl~

n1

The dual space of 11 is l and carries the dual norm

lx u~pIfor p = .. ri 1

*The -xarnple involves the Hamiltonian 4:1 
1 

, 1' + R~ given by

(38) lI(x,p) =-3pl + I - V(x). W
We - aim that u - ) is a strict viscosity solution of the equation

(39) u + H(x,Du) =0

-iile u(1/2)((p + 1) is a strict viscosity solition up to 1/2 of

(40) u + 1l(x,fl) , 0

iince u 4 o holds on the sphere {fxl = 11 but not on the ball, the (boundary-value

* pro~blem analogue) of Theorem 1.1 does not hold.

To verify the claims, one first observes the relations

0 V(x) = p E ~ n l4~p 0  1 and Pn signx, if xn 0 }

O-Px) f p c1': -1 p D-(x) and Ip p1,. < C),

for all E: > 0 and x f 1 1, 4hile

rDjp(x) ~ f0 < C I.

-24-



It is then straightforward to see that u 9 is indeed a strict viscosity solution up

to 1 of (39). it is completely trivial that u is a strict viscosity solution up to 1/2

of 40, ine 4ux)= fr (1/2. (observe that for A., e > 0,

+ +O xl'x) XD )u(x).) This completes the discussion of the example.

-25-



11. FURTHER REMARKS ONl EXISTENCE RESULTS

11.1. Coercive Hamiltonians.

This section is devoted to variants on the existence results proved in Part 11 for

(SP) and (CP). The distinguishing property of H which will be used in this development

*will be an assumption that H is large enough "at -" and this will allow us to relax

*(H13) to (113w). For simplicity we will consider only bounded data and require V to be

*RN, although we could proceed in the context of the strict viscosity solution theory.

we will also use the blanket continuity assumption of Section I.

For the stationary problem (SP) we have:

* Theorem 11.1: Let V be RN and (0) hold. Assume (H12), (113w), (HO4 and that there are

constants Rot CO > 0 such that

(41) lH(x,O,0)l 4 C. and H(x,r,p) > C0 for jpj > R, Irl < c. and x e V.

*Then there exists a unique bounded viscosity solution u C BUC(V) of (S). Moreover, u

* is Lipschitz continuous on V.

For the Cauchy problem (CP) we will assume that for a certain constant M4 given

* later

-(42) 1(x,t,r,p) * as 1PI + uniformly for Cx,t,r) c V x 10,T] x [-11,14.

(43) For each R > 0 there is a C. such that

H(X,t,r,p) CR

for (xit,r,p) C V x [0,T) x [-1,14] X 8R

(44) There is a modulus m such that

?(x,t,r,p) ( 1(x,s,r,p) + m(t a )

for 0 4 s < t (T, x 6 V, Inl 4 H and p c V*

We have:

-26-
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Theorem 11.2t Let V be RN and (0) hold. Assume (M1), (113)wt CM) and

for some constant Co. Let 9 e BUC(V,

C1 0 supJ9 and M4 - COT + C1 .

Let (42), (43), (44) hold. Then there is a unique bounded viscosity solution of (CP)

which is uniformly continuous on bounded sete and uniformly continuous in x c V

uniformly in t e 10,T). moreover, if qs is Lipachitt continuous on V. and m(r) - Cr forZ

some constant C, then u is LlpechitZ Continuous in x uniformly in t c (0,T).

Remarks 11.1:

Mi Uniqueness is not a direct consequence of the uniqueness results in Parts I and

11, but follows from these results combined with the existence of (approximate) -

L~ipschitz continuous viscosity solutions Z

(ii) It will be clear from the proof that we only need to assume (H2), (113w) for

Ir 9c 0 in Theorem 11.1 and for Inl 4 M for Theorem 11.2, since it is only in this

range that the various constructions take place.

(iii) in the case when V - l the analogous results were obtained by G. Sarles (41,

extending previous results due to V. L. Lions 1181, (19).

Sketch of Proof of Theorem 11.1: We will make a number of reductions as in Part 11

((10]) and take H~x,p) to be independent of r for simplicity as well. observe that if

we prove the existence of a bounded Lipschitz continuous viscosity solution of (SP)

under the assumptions, then it will be unique among BUC(V viscosity solutions of (SP)

by the results of Part I (C91). We begin the existence arguments by choosing C1 > C0

and truncating H at C11 that is we replace H by74

(45) fl(2,p) -min(max(H(x,p),-C 1 ),C1 ).

Note that

R~x,p) > C0 for 1PI > RO , x C V

because R satisfies the same condition. For n - 1,2.... and Ni as in (0) set

(46) Xnt(x) (I (1 nN(x)) +

-27- S
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and then

(47) H1n(x,p) -XnlX)l(Xp) + (1 - XnX))CoRo'Ipk.

Clearly
(48) Hnlx'p) ) C0 for p > R0 , X C V

and Hin f BUC(V B ER ) for R > 0. To form the next approximation, we fix R1 > R0 and let

T be the projection of V* on 4 that is

Tp - p if JPJ < R1 and Tp -(R1/jpj)p if Wt > 1.

T n(xp) - Hn(X,Tp).

since R C BUC(V 'C V, the results of Part 11 (recall Remark 1.1 (1ii)) provide us

with viscosity solutions un C UC(V) of

+ In (w,Dun) n 0 in Vnn

and by the comparison results

lui1 sup lfln(XiO)I CO-.

Now one uses the equation, (48) and the definition of R to conclude that un is a

viscosity solution of

(49) IDun1 < R0 on V.

UIsing this we will show that

(50) un is Lipschitz with constant R0

(Lemma 11.1 below). It follows from this that D Un(x) C Ba for all x and then that un

is a viscosity solution of

-1(51) un + Hn(x,Du%) = 0 on V.

Since H n * H uniformly on BR x V for all R, we may invoke the various assumptions,

(50) and (51) to deduce from the convergence theorem in Part II ([10]) (restated to use

the uniform Lipschitz continuity (50) and (H3w) rather than (H113)) to conclude that un

converges uniformly on bounded sets of V to a viscosity solution u of (SP) which

satisfies (49) and (50).

-28-
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It remains to establish:

Lemm~a 11.1: Let V be RN~ arnd satisfy (0), Rt > 0 arnd ui e BUC(Bft for all R > 0.

i)Let w c V, f e BtIC(BR) for all Rt > 0 anid ui be a viscosity solution of

(52) (Du,w) 4 f(x) in V.

Then if e ;0 0

(53) U(x + aw) - u(x) < f fVx + Tw)dT in V.

(ii) If L 0 arid u is a viscosity subsolutioi of

(54) jDuj < L in V

then

(55) Ju(x) -u(y)l -9 Ljx - j for x, y c V.

Proof of Lemma 11.1: The assertion (ii) is a consequence of Mi since (54) implies .
that u is a viscosity solution of CDu,w) < C in V for all w c B,. There are several

arguments which can be used to prove (i). One way is to consider u(x) as a time- .-

independent subsolution of

(56) vt + (Dv,w) =f in V x [0,-)

which satisfies the intial condition I
(57) v(O,x) =u(x) in V.

Then set v(x,t) u(x - wt) + ff~ - ws)ds and check that v is a viscosity solution of
0

(56) satisfying (57). Since v e BtJC(1R x t0,Tl) for ft,T > 0, the proofs of the

comparison results of Part 1 ([9]) adapt to establish u 4 v. (The requirement that u

or v be uniformly continuous in x uniformly in t in the results of Part I can be

replaced by using finite speed of propagation - the finite dimensional results of [7]

extend to infinite dimensions - or by the general results of (121.)

Sketch of Proof of Theorem 11.2: The asserted uniqueness follows from the

approximations constructed during the existence arguments. To prove the existence we

will use the method of G. Barles [4]. Let C > 0 and consider the function

H (x,t,r ,p) f irif H(xX,r,p) dT
t-E r(<X(t

-29-
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where we put q(x,t,r,p) =H(x,0.r,p) for t -C 0. In view of (44) we have the following

S. relations:

%.

* Ci) H(x,t,r~p) )H~ Cx,t,r,p) ;0 H(x,t,r,p) - w(e),

(58))
(ii) H (x,t,r,p) - H (x,s,t,p) 4 Ci t - 9) for 0 4 t 4 T.

e C C

*Indeed, to prove (58) observe that if t > a + e, then the difference is bounded by

-~ a), while if t < * + C we may write (aurpressing the variables x, r, p)

Ht) - H~ (s) f inf H(X) - inf HCX))dr +

* (59) a

+ f ( mE HML inf H4X) )dr
t-£ Tt TXI(0tP

and observe that the second integral is nonpositive while the first one is bounded by

* ~W~Ce)(t-s).

Next we claim that for each Lipschitz continuous approximation 9. of q (e.g., the

inf convolution (P,(x) -inf (vPy) + Ix -YI/e) there is a bounded viscosity

YEV

solution u. of

u + H (x,t,Du) 0 on V x (0,T), u CxO) ( ~x) on V

which is uniformly continuous on bounded sets and is Lipschitz continuous in x c V

uniformly in t C (0,T]. once this claim is established, then it is easy to show that

* such a solution is unique, satisfies iucl 4 M4 on V [ 0,T) and, using the comparison

results of Part I ((9]),

~up fu r u.1 < (c(C) + wJen fT + (£C + n).
0cC,T]

*Hence u. converges uniformly to some u with the properties asserted in the existence

theorem. Moreover, the uniqueness results follow upon comparison of another assumed

solution with u., which is Lipschitz continuous in x.
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The existence of u. is obtained by using reductions of the sort outlined in the

proof of Theorem 11.1 in conjunction with a priori estimates we now describe. rirst of ..

ai~l, comparison shows thiat u. is bounded by 14. Nlext, one shows that there is a--

constant C. such that

(60) U,(x,t + h) ), u. Cx,t) - C~h for h > 0.

This follows from (59) and comparison results - observe that the inequality will hold

at t =0 since q,(x) c t is a viscosity subsolution for large C (use (43)). Then one-

uses the equation satisfied by u. and (42) to obtain bounds on JDu.J uniform in t.

Using these estimates and the methods by which they are obtained, the existence oft

is established using reductions similar to the ones employed in the proof of Theorem

I.

NW,
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4.

11.2. Remarks on Faedo - Galerkin Approximations.

The main thrust of this section is that Galerkin procedures, naively posed,

dramatically fail to approximate the solutions provided by the theory we are 40

developing. The search for of convergent finite dimensional approximation procedures

remains an interesting open area in the subject.

We will restrict our attention in this section to the case in which V is a

separable (real) Hilbert space with which we identify the dual V i V* - V. Thus ,

will be the inner-product of V. Let us consider a Hamiltoninan H(p) which is a

function of p e V alone and is uniformly continuous on bounded sets. It follows from

the results of Parts I and II that for each E £ UC(V} there is a unique viscosity

solution of the problem

(61) ut + H(Du) 0 in V x (0,-), u(x,O) - O(x) in V

which iS continuous on bounded sets and uniformly continuous on V uniformly in t. Let

V -V2 c • C Vn C * be an increasing sequence of finite dimensional subspaces of V

whose union is dense in V. Denoting the restrictions of H and 9 to Vn by Hn and 0n' it

is natural to hope that the solution un of

(62) unt + H n(Du n 0 in Vn x [0,-), un (x,0) - 0n x on Vn

will converge to the solution u of (62). Indeed, one might hope to base the existence .-

theory on this standard Faedo - Galerkin method. :V

However, we claim that, in general, this method does not converge. In fact, we

next present an explicit example in which the solutions un of (62) converge to a

function which is not the solution of (61). we console ourselves with the remark

that the problem (61) should be regarded as a problem in RUC(V) and not in V, so it is

too not so surprising that simply approximating V does not succeed here. The possible

utility of further compactness conditions in this direction remains to be investigated.

One last comment before the example: There are very many possible choices of Vn , Hn,

en which one might make in any particular problem. The example below shows they may be

choosen badly. The possibility remains that they could be choosen well.
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Example 11.1 Let V be the Hilbert space of square summable doubly infinite sequences

x - {n~'0 equipped with the norm

no

Put

H(p) - sup (p,y) where 9 - (p c v: IpI 4 1 and pn p_, for n 0"
y(E

where we have used the letter 9 because its elements are even. Clearly H is convex and

tipschitz continuous on V. It follows that (60) has a "finite speed of propagation"

and we may conaider the problem for arbitrary 4q:V + R which is uniformly continuous on

bounded sets. We choose
y~x)- ~(F -x-j

)1

Next we set

Vin [x e V: xi =0 for j n + 1or j -n -2}.

The Lax - Oleink formula for the solution of problems like (6t) (see (18] for the

finite-dimensional case - the same formula holds here) presents the unique viscosity

solutions of (61), (62) in the form

(63) u(x,t) = inf {(y): y c x + tE f for (xt) c V x [0,-)

and

(64) Un(Xt) - inf bp(y): y C x + ,nE ) for (x,t) C Vn x [0,M)

where Pn is the orthogonal projection onto Vn" Now, fixing x c Vn and let n + - we

easily compute that

u (xt) inf I (x + t 2 + tk ) + t 2 k (X + t )2
n J- j J' .1 - j n 0 +1 -n 0 -1 n 0 +1

-t
2 c 1 k ~ k + kc ( 1/21n+1 j n+1

-33- J%
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V(x) + inf -2t J OIk Ix - I 2tk n ixn 221 kn1

n +1n 0 1

0 2 2 (1k + k n 1  k ~J 0 for 1 < j n n0 +

or

- 0 2

u(X~t) = (x) - t/2 if X I2 n-
0J J 2t

with X IXj - , (recall that for i no + 1, x~ no+ 0). Therefore, putting X~

'IIC -j u1n converges uniformly on each subspace Vn, to the function dgiven by

2PO L _IX if X 2 t

2 =1 1 T

uNx't)

IF(x) - 2t( j X~ i fJ1 J 2

*The function ~1is Lipschitz continuous on BR x 10,T) for all R, T 0, C1 on the open

2 t 2
sets X and X and it satisfies (61) on the latter of these sets.

.1 2 i.I j 2

*However, it is not a solution of (61) since

aI + H(DI) -t + V2 2 x < 0 on X2 <

j=1 J j1 1

Example 11.2: Let H be continuous and convex on V. We assume that for all n large

enough

(65) (HIv~ "IV
Vn n

where *denotes the operation of taking the convex conjugate. This is equivalent to

(65)' sup I(p,y) -HCy)} sup I(p,y) - 1(y)) for p c V .n
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0 1 4.

Observe that RI(p) V *(Ip) is a particular case for which (65) holds. In this case the

unique solution of (62) is given by the Lax-Oleinik formula [181 as

nxt)- int ( 9(y) + tH*((x - y)/t)t y e V~1

It is clear from this that un(x,t) ) u(x,t) for all x c V and t > 0, but we will see

the convergence is not uniform on balls in Vn . Indeed, take

R(p) d jIev- - -{n)-VI i X <
n-i

V- {x V: x - 0 if ) n + I and
- . .p

#(x) X 2  + X 2 +2ax x2x A X2k 2 2k-_ X2k

k.I

on somse large ball, where 101 < 1. Using finite speed of propagation, we may assume

this form of 9 globally and the results will be valid locally. Let on be the

coordinate vector with I in the nth-slot and zero elsewhere. One computes that

un(*nft) - - t
un~ent} =2 1 + t

while

u(enn , + 3t + 3t 2 + t - 2) - CL -t 3* t MI + t)- (ta) 2r2

and if S 0 0 these two quantities differ for all but a few values of t.
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11.3. Some Hamilton-Jacobi Equations Arising in the Optimal Control of Evolution

p'-" Equations. -

In [1], (2], V. Barbu and G. Da Prato study optimal control problems of general

abstract evolution equations in a Hilbert space V, which we identify with its dual as

• in the preceeding section. By the usual dynamic programming argument, they were led to

a class of qasmilton-Jacobi equations, a particular case of which is has the following

form:

(66) Ut + (Ax,Du) + F(t,Du) 0 in V x (0,T]

where -4 is the infinitesimal generator of a strongly continuous semigroup e- tA, t > 0,

of bounded linear transformations on V and F(t,p) is continuous on [0,T] x V and there

is a local moiulus a such that (at least) for R > 0

(67) JF(t,p) - F(tq)l 4 O(Ip - qj,R) for t C (O,T] and p, q e BR.

Here we show how a simple device tranforms the problem (66) into one which (almost)

fits into the classes studied in Parts I and I. We are able to solve the resulting

equation and we check that this transformation is consistent with the value functions

of some optimal control problems. 4owever, the success of this device will depend

essentially on the assumption that F in (66) does not depend on x and we therefore

exclude more general equations studied by 8arbu and Da Prato in [I], E2].

The device we use to treat (66) is the simple (and purely formal for now) change

of unknown function given by

(68) u(xt) =v(et ,t).

Calculating formally, one sees that if u solves (66) then v should solve

(69) vt + H(t,r)v) = 0 in V x (0,T]

where

(70) H(t,p) = F(t,e- tA p)
and e-t h* Is the adjoint semigroup (generated by the adjoint -A* of -h). If A is

of"-). I A i

bounded and u and v are related by (68), then u is a viscosity solution of (66) if and

only if v Is a viscosity solution of (69), so the correspondence is perfectly

-36-
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sensible. In the general case, we will call u a viscosity solution of (66) if it is

given by (68) where v is a viscosity solution of (69). To support the appropriateness

of this procedure we will subsequently show that when u is given by (68) and v is the

viscosity solution of (69) which we construct, then u is indeed the value function of J..

the associated optimal control problem.

We begin the discussion of existence and uniqueness for (69). First, R as given

by (70) is clearly continuous on [0,T] x V and satisfies (67) (that is, H is uniformly

continuous in p on bounded sets). The results of Parts I and 1I ([9], [10]) do not

apply directly since in those works we assumed that H was uniformly continuous in t on

bounded sets. This is the case above if h is bounded, but not otherwise. However, an

inspection of the proofs in (9] shows that this continuity property with respect to t

was not needed - it is enough to have continuity and (66) (Lemma I of [101 still holds

and then the uniqueness proof runs as usual). By contrast, the continuity in t

uniformly on bounded sets was used in a significant way in the existence program of

103 in one step - the verification that certain value functions for differential games .Wk

were viscosity solutions of the associated Hamilton-Jacobi equations. It does not seem

easy to relax the assumptions to the degree needed here in any general way. However,

the explicit structure we are dealing with allows us to proceed in this case.

Strengthening (67) to

(71) F is uniformly continuous on bounded subsets of [0,T] X V

the existence program of [10] now succeeds for (69), even though we do not improve the

continuity of H in ti The reason for this is that the structure of H, which we regard

as a special case of the general form H(x,t,r,p) - F(x,t,r,S(t)p) where F is uniformly

continuous on bounded sets, satisfies the usual existence and uniqueness conditions and

t + S(t) is a strongly continuous mapping into the bounded linear .'f-maps of V. The

reason that this structure allows one to avoid the difficulty mentioned above is that

(in the notation of :10]) the quantity (S(t)p,E(q(s))) 1s now continuous in t uniformly

-37-

.................... . "2
~~~~~~~~~~~~~~.. . . ..... , .;., .,,.,....-.-o-...,....- -..........-.. ,.-.,...-...,....-..... -.... ..-.... . . ...-

• j- . ... ' ' ' , . ,. ".•.. .' . .,. .' .. .' .'- .,. .- ,' '. - .'-'-. -°- . ° .' ... .' . . ."° ',- -. . . . -.. . ". .. , -



for qis) e Q With these remarks, we deduce from the proofs in Parts T 11I the

following result:

Proposition 11.1: Let (67 hol ahic is unfcl contnu o

(i heei at most one vsoiysolution v of (69) wihi nfrl otnoso

bounded sets, uniformly continuous in x uniformly in t c [0,T) and satisfies

*v(xO) 4P- )

(ii) if also (71) holds, then there exists a viscosity solution v e OC(V [ O,T]) of

*(69) satisfying v(x,O) 9(x) on V. Moreover, if T is bounded, then

V f ETJC(V x [0,T] ) while if (p is Lipschitz on V, then v is Lipschitz on V x 10,T].

We conclude by showing that the above transformation is compatible with optimal

control problems. For simplicity, F will be taken to be a t-independent convex

function of p c V. F will denote the conjugate convex function of F.

To formulate a control problem associated with (66) consider the state equation

d
T t+ AJC+a O 0fort ;o0, X0 x

where x c V and the control a lies in L (O,T;V). Then Xtis given by

x -=tAx~ t  (t-B)A

We may define the following value function

(72) u(x,t) =inf {fF*(a )ds + (Xt.
01 a0

The notations and assumptions above being in force, we have:

Propsiton 1.2:Let v be the solution of (69) given by Proposition I1.1 and u be

* given by (72). Then

(73) u(x,t) =v(e tAx,t) for x c V, t c 10,T]i.

*Proof: Let t > 0 and x, y c V and y =e tAx. Set w(y,t) =u(x,t) so that w is given....

* by the formula- -
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(74) w(y,t) - jf { fir (a do + i(y f *(t - ) d)
a 0 0

which reveals that w(y,t) does not depend on the choice of x (if it is not unique). I
That is, w is well-defined on [(y,t)s t [ 0,T] and y e R~e-tA) Ifwhwta

v =w on this set, the claim is proved.

By the usual dynamic programming arguments, (74) yields

(75) w(x,t) - int r (a C)ds + w~x - f a Ct~u aszdoOT)
a 0 0

for t > T )P 0. We will now assume that 4p is Lipschitz since a density argument show.

that it suffices to prove that w -v in this situation. Recalling trem convex analysis

that r satisfies

(76) 0C' 0 and F (q)/IqI as *q

we deduce easily that w is finite on V x [0,T]. It is obvious from the formula that

w(y,t) is Lipschitz continuous in y uniformly in t since 9 is Lipschitz. We next claim

that w is Lipschitz in t. Indeed, let h 0 and let t 'A h. Choose

at a e ODir (a constant control) and then deduce from (75) with T t -h and the

mtf estimated above by value for this constant control that
* h )

w(x,t) 4 hF*(a) + w(x - f~ ot9)ada,t - h)
0

(77)

4 hr' (a + w~x,t -h) + Ci~ishIMlh

where C is a Lipschitz constant for w in x and K and w are constants such that

On the other hand

w~x,t) inf I f (aa)do -Ct~ewhf I aa Idol + w~x,t -h)

Q 0 0

and using (76) we find that for all C ), 0 there is a constant C > 0 such that

(X CV EC*X) + cc.

tieing this above we see by choosing C sufficiently small we have

w~x,t) -Kh + w~x,t -h)

-39-
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and it follows then that w is Lipschitz continuous of V x (0,T]. These considerations

also show that we may restrict the infitnum in (75) to controls at sch that

(78) f (iF*(ct)I + ja Uds < 1C(t - T) for 0 < T 4 t T.

Finally we claim that w is a viscosity solution of (69). This will complete the

proof, for the continuity properties of w established above and the uniquaeness result

of Proposition I1.1 then yield that v - w. The proof that w is a viscosity subsolution

* of (69) follows the usual lines ([18]) and is quite easy since for every a C D(F )we

* have (77) and, moreover,

if fe ~ad~s -het~ al 0 as h *0+ e

We then obtain for any such a

wt + (e tAS,Dw) -F*(in) < 0 in V x (0-)

in the viscosity sense. Taking the supremum over an e D(F*) we conclude that w is a

viscosity subsolution of (69).

Finally, to prove that w is a viscosity supersolution, let (p,y) e D-w(z,s) where

s>O0, Y E R and p cV. That is,

w(y,t) > w(z,s) + (p,y -Z) + Y(t - ) + o(fy -Zj + It - 1).

*Using (74) (with t -s, t' s - h, h >0 small) and (78) we deduce that .

hh
A + SUP' dT) f F*( ins Ii ). 0C(h) .

00

where C(h) *0 as h 4 0 and "sup'" refers to taking the supremum over controlsa

satifying (78) (with t - t' -h). 4ext we observe that for sucha

h * h h
p, eA(s T ) d- ~(A sp f I~ -A (s-T)~ -eA splia~d

00 0

0 ( s( T )h
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and the right hand aide tends to 0 as h 4 0. Finally we obtain

Urn, inf + suph'[ a ~ p h,- f 1o fF (c)d )
h+O 0 0

which obviously implies

lim, sup + sup le- Pi; -i r f O rc)dr} 0
h0a0 0

N~ow we are done since the left-hand side is nothing but A F (eh S P).

% r
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